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Abstract: In this study, we propose a tensor-based learning model to efficiently detect abnormalities
on digital mammograms. Due to the fact that the availability of medical data is limited and often
restricted by GDPR (general data protection regulation) compliance, the need for more sophisti-
cated and less data-hungry approaches is urgent. Accordingly, our proposed artificial intelligence
framework utilizes the canonical polyadic decomposition to decrease the trainable parameters of the
wrapped Rank-R FNN model, leading to efficient learning using small amounts of data. Our model
was evaluated on the open source digital mammographic database INBreast and compared with
state-of-the-art models in this domain. The experimental results show that the proposed solution
performs well in comparison with the other deep learning models, such as AlexNet and SqueezeNet,
achieving 90% ± 4% accuracy and an F1 score of 84% ± 5%. Additionally, our framework tends
to attain more robust performance with small numbers of data and is computationally lighter for
inference purposes, due to the small number of trainable parameters.

Keywords: mammography; deep learning; machine learning; tensor-based learning; CP decomposition;
breast cancer; computer-aided detection; screening

1. Introduction

Breast cancer is the leading cause of death in women worldwide, accounting for more
than 685,000 deaths in 2020, and it is the most commonly diagnosed type of cancer, with
more than 2.26 million new cases [1]. It is a variation of malignant growth expanding
from breast tissue, often in the interior area of the breast, metastasizing to other body
areas (i.e., lymph nodes). It commonly affects women above 40 years old, with the main
risk factors being the patient’s age, family history, and level of obesity [2,3]. Fortunately,
observational studies have shown that the early-stage detection of breast nodules leads to
a very high 5-year survival rate, exceeding 90%, while on the contrary, the survival rate
drops by 27% in cases of late diagnosis [4]. This emphasizes the need for better prognosis
and the development of improved screening strategies.

The assessment of breast cancer detection in a non-invasive manner is very important
for identifying abnormal regions of interest (ROIs) on medical imaging modalities. One
of the most effective non-invasive screening techniques for the early detection of breast
cancer is digital mammography. It is the most commonly used diagnostic test; it uses
low-energy X-rays to identify lumps in dense tissue and has been proven to assist in
the decrease in mortality rates [5,6]. However, despite its advantages, mammography
presents many limitations. More specifically, it is associated with (a) high risk of false
positives [7–9], where in many cases the biopsy detects no cancer, as well as (b) a high risk
of false negatives [10–12], where the breast cancer remains underdiagnosed. Therefore,
in recent decades, many methods have been adopted in order to help radiologists reduce
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the diagnostic errors of screening mammography while avoiding invasive exams (i.e.,
needle biopsy) [13].

The rapid growth of artificial intelligence (AI) provides robust tools for helping health-
care experts to identify and classify potential tumors and calcifications and reduce the
mammographic screening reading workload [14]. In more detail, a lot of effort has been
put on applying AI techniques on low-cost diagnosis solutions such as mammography [15],
lung segmentation [16], and other medical imaging applications [17]. The improvement,
however, of the existing AI algorithms [18] is hindered by limitations of data availability,
which is considered a major drawback. This occurs from two major factors; first, the lack
of publicly available large datasets and, second, the requirement of many AI framework
architectures (i.e., federated learning [19] in an effort to address GDPR compliance) dictating
the training procedure to be applied on small sets of data.

Based on the discussion above, in this study we introduce the idea of tensor-based
learning for the automatic mammography reading. Tensor-based learning allows us to
efficiently address small sample setting problems, where the number of data for training
the models is limited, without compromising the models’ prediction accuracy. To achieve
this, the canonical polyadic (CP) decomposition of rank R is applied on the proposed
model’s trainable parameters to significantly reduce their number. Hence, we name the
proposed model Rank-R Fully-connected Neural Network (FNN). The proposed Rank-R
FNN is capable of characterizing tissue in mammography images by exploiting the struc-
tural information of the input. According to the experimental results on the open digital
mammographic database INBreast, our solution outperforms competitive deep learning
methods, and at the same time, it is more efficient in terms the amount of training data
required, as well as the computational cost for inference purposes. On the contrary, the pro-
posed model presents some limitations mostly related to the additional pre-processing
effort needed and the higher computation time for the training process.

The remainder of the paper is structured as follows: Section 2 presents related works
on applying deep learning models and, specifically, convolutional neural networks (CNNs)
on mammography screening for breast tumor classificication. Section 3 describes the
proposed tensor-based learning system for mammogram classifications, as well as the
applied pre-processing steps. In Section 4, an extensive experimental evaluation of the
discussed methods is provided, while Section 5 provides a summary of findings and
concluding remarks.

2. Related Work

Many attempts have been carried out focusing on the identification of malignant areas
and the classification of tumors. Many researchers have focused on applying modern
deep learning architectures based on CNNs [20] for detecting and classifying breast cancer.
Below, we present a few such indicative works.

The authors in [21] propose an ensemble approach for breast neoplasm classifica-
tion as benign or malignant, by combining mammogram imaging and spectral signals
of blood plasma samples. Their proposed solution utilizes a recurrent neural network
(RNN) for processing spectral signals and the deep CNN AlexNet [22] for image processing.
The processed images and spectral signals are fused into a common representation, which
is then fed into a support vector machine (SVM) responsible for classifying neoplasm as
benign or malignant. In the work of [23], a new framework for segmentation and classifi-
cation of breast cancer images is presented. More specifically, the proposed technique is
based on different deep learning models, including InceptionV3 [24,25], DenseNet121 [26],
ResNet50 [27], VGG16 [28], and MobileNetV2 [29], for the classification task, and a modified
U-Net for the breast segmentation. The framework was evaluated on three mammographic
datasets and the modified U-Net model [30] alongside the InceptionV3 model, which
achieves the best result . In the study of [31], a fusion model is developed that utilizes the
you-only-look-once (YOLO) architecture [32] to localize and classify abnormalities on digi-
tal mammograms. The proposed method was evaluated on both current, as well as original
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and synthetic, prior mammograms and identifies three different types of lesions: mass, cal-
cification, and architectural distortions. In more detail, the CycleGAN [33] and Pix2Pix [34]
techniques were used to generate the new translated prior mammograms, which resemble
the current mammograms, while preserving the general texture of the prior ones. The
study in [35] introduced the CoroNet model, which is based on the Xception CNN architec-
ture [36] and is capable of performing automatic four-class (benign mass/malignant mass
and benign calcification/malignant calcification) and two-class (calcifications and masses)
classification of breast cancer. The presented model is pre-trained on the ImageNet dataset
and fully trained on mammograms. In [37], the authors present a residual-aided classifi-
cation U-Net model (ResCU-Net) for simultaneous mass segmentation and classification.
The proposed model incorporates the U-Net and SegNet [38] architecture aided by residual
blocks to exploit multilevel information for achieving improved tissue identification. The
study in [39] proposes a multi-view feature fusion network model for classification of
mammography images in two stages (normal/abnormal and benign/malignancy), based
on multi-scale attention DenseNet. Their work mainly focuses on the construction of
the multi-scale convolution module, which uses convolution kernels of different scales
for image feature-extraction, as well as the construction of the attention module, which
connects to a parallel channel attention module and a spatial attention module .

Besides the exploitation of established deep learning architectures, many researchers
have relied on more custom CNN architectures. Indicatively, in [40], the deep-learning-
assisted efficient adaboost algorithm (DLA-EABA) is proposed. The suggested solution
utilizes the AdaBoost algorithm for the final prediction function, alongside a CNN to
characterize breast masses in several imaging modalities, such as magnetic resonance
imaging (MRI), ultrasound (US), digital breast tomosynthesis, and mammography. In [41],
the authors present a Multiscale All CNN (MA-CNN) to automatically categorize the
mammogram images into normal, malignant, and benign classes. The MA-CNN model
achieves higher classification accuracy by fusing the wider context of information using
multiscale filters without affecting the computation speed. In [42], a method for the
automatic detection and classification of cancerous regions in mammograms is presented,
in which a CNN, alongside the grasshopper optimization algorithm (GOA) [43], is utilized.
The GOA-based CNN achieves optimized feature extraction and feature selection, as well
as decreased computational cost.

Although all the aforementioned CNN-based approaches are cost-effective solutions
with increased predictive accuracy, they need a huge number of annotated data to be
efficiently trained, which is still lacking at the required scale [44]. This makes them in-
applicable to be used as medical imaging solutions and raises the need for the further
development of low-cost and lightweight systems that tackle the shortcoming of a lack of
medical data.

Our Contribution

The importance of our work is summarized in three major pillars:

• The creation of small sets for training purposes, in an effort to meet real-world criteria
meaning the limited number of data;

• The utilization of CP decomposition to reduce the number of data needed for the
training of the proposed Rank-R FNN model; and

• The requirement of lower computational cost due to the lower amount of trainable
parameters.

The employment of the filters converts the initial two-dimensional images to three-
dimensional objects, enriching the raw information with additional low-level image fea-
tures. It should be noted that the employment of the aforementioned filters takes place
without requiring any training or parameter tuning. Accordingly, the tensor-based model
exploits these auxiliary features and combines it with further spatial information extracted
from the neighborhood of the pixel under examination. The lower computational cost
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comes straight from the reduction in the trainable parameters. In this way, the proposed
solution is proved to be a robust tool for classifying ROIs on digital mammograms.

3. Methodology

In this section, we first formulate the problem of automatic detection of abnormalities
on digital mammographies, and then we present the proposed Rank-R FNN for tackling
that problem.

3.1. Problem Formulation

The problem of the automatic detection of abnormalities on digital mammographies
can be seen as a classification problem, where the objective is to classify every mammogra-
phy pixel to one out of C available classes (e.g., healthy, calcification, and malignant classes).
A mammography pixel at location (x, y) on the image plane is represented by a scalar value
or by a set of values depending on the number of image channels. Using that information
to classify a pixel will result in a classifier that disregards the pixel’s spatial information,
that is, the relationship of the pixel at (x, y) with its neighboring pixels. To incorporate
spatial information into the classifier, we represent a pixel at location (x, y) with the values
of a patch of pixels centered at the same location. Then, the pixel classification problem
is transformed into a patch classification problem, where the class of the pixel at location
(x, y) is the same as the class of the patch centered at (x, y). This approach also followed
in [45–47] yields more robust classification models. Based on the discussion above, we
describe below the formulation for the problem of automatic detection of abnormalities on
digital mammograms.

Given a set X of N patches, we want to map each element Xi(i = 1, . . . , N) to one of
the available classes. Let C denote the number of these classes and ti represent the ground
truth label vector for the corresponding Xi patch. The vector ti consists of C− 1 zero-value
elements and a single element with a value equal to 1, which depict the class to which the
Xi patch belongs . Alternatively, ti = [ti,1, ti,2, . . . , ti,C]

T ∈ {0, 1}C, given that ∑C
c=1 ti,c = 1.

Eventually, these pairs (Xi, ti) compose the final dataset D that is used to feed the models
for training and testing purposes. D is defined mathematically by Equation (1).

D = {(Xi, ti)}N
i=1 (1)

The goal is to create a function f that is formed by a set of parameters θ ∈ Θ and
correctly predicts the class of a given patch Xi. The output of f would be a vector containing
the estimated probabilities for Xi to belong to each class. Thus,

f (Xi, θ) = [p1(Xi, θ), . . . , pk(Xi, θ), . . . , pC(Xi, θ)] (2)

where pk(Xi|θ) shows the conditional probability that the i-th sample belongs to kth class
given Xi and the parameters θ. The final prediction of the class is given by

t∗i = arg max
1≤k≤C

pk(Xi, θ), (3)

which replaces all the values with zeros in the output vector, except for the element with
the highest probability, which is set to 1.

To create a proper function, we have to minimize the number of cases where the
predictions are different than the corresponding ground truth labels, that is, t∗i 6= ti. This
objective is directly related to the estimation of parameters θ, so that

θ∗ = arg min
θ∈Θ

1
N

N

∑
i=1

LCE
(

f (Xi, θ), ti
)

(4)

where LCE refers to the cross-entropy loss function and θ ∈ Θ is the set of parameters that
defines the form of f .
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3.2. Rank-R FNN Model for the Automatic Detection of Abnormalities in Mammograms

As mentioned in the previous section, we represent each mammography pixel i by a
square patch of pixels centered at the i-th pixel’s location. This way, we are able to exploit
the pixel’s spatial information encoded in its neighboring pixels. Therefore, each pixel i is
represented by a third order tensor Xi ∈ Rs×s×b, where s stands for the height and width
of the patch and b for image channels.

To address the problem formulated in the previous section, we represent the function
f by a Rank-R FNN model model. The Rank-R FNN model is a neural network with
one hidden layer that consists of, let us say, Q hidden neurons. Rank-R FNN weights
connecting the input to hidden layer are tensors satisfying the Rank-R canonical polyadic
decomposition [48]:

w(q) =
R

∑
k=1

w(q)
3,k ◦ w(q)

2,k ◦ w(q)
1,k ∈ Rb×s×s, (5)

for q = 1, · · · , Q with w(q)
3,k ∈ Rb and w(q)

i,k ∈ Rs, i = 1, 2. Superscript q denotes that these
weights connect the input to the q-th neuron of the hidden layer, and “◦” operator stands
for vectors outer product. The output of the Rank-R FNN for the i-th sample and c-th
class is

pc
i = σ(〈v(c), ui〉), (6)

where v(c) collects the weights between the hidden layer and the c-th output neuron, σ(·)
denotes the softmax activation function, and ui = [ui,1, ui,2, · · · , ui,Q]

T with

ui,q = g
(〈( R

∑
k=1

w(q)
3,k ◦ w(q)

2,k ◦ w(q)
1,k

)
, Xi

〉)
(7)

for q = 1, · · · , Q to be the output of the hidden layer activated by function g(·). Given a
collection of training data in the form of relation (1), we estimate the set of parameters of
the employed models using the backpropagation algorithm [49] with the Adam gradient
based optimizer [50]. In the case of Rank-R FNN, the parameters θ of function f are the set
{w(q), v(c)} for q = 1, · · · , Q, and c = 1, · · · , C.

4. Dataset and Pre-Processing
4.1. Dataset Description

For the purposes of this study, the INBreast dataset [51] was utilized. It is a collection
of 410 mammograms that corresponds to 115 independent cases, 90 of which refer to
women with both breasts affected, while the other 25 women have undergone mastectomy.
Additional information, such as the BIRADS score, the density level, the existence of tumor
or calcification, and other indexes, are included in an auxiliary CSV file. Segmentation
masks, containing precise contouring of potential tumors or calcification, are provided in
XML format for each non-healthy image.

In this paper, we do not take into account the grouping according to the patient each
mammogram belongs to. Instead, we consider each image as a standalone object that comes
with further information: (a) the lesion existence binary index, (b) the calcification existence
binary index, and (c) the segmentation contouring details.

4.2. Pre-Processing Pipeline

The first major task of the pre-processing pipeline is related to the enrichment of the
given images using some basic low level filters aiming to exploit any potential features
related to the ROIs. Accordingly, we utilized the following filters: Sobel in combination
with different threshold values, the Canny edge detector, Gaussian difference, gamma
correction, histogram normalization, and Gabor. As shown in Figure 1, a basic cropping
procedure is applied on the initial mammography, nine independent filters are derived
from the cropped image, and a multichannel object is produced, including the raw image.
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In this way, the initial mammogram is transformed to a three-dimensional object that
contains more information and additional features to be exploited.

Figure 1. This figure presents the first stage of the proposed AI framework, where peripheral cropping
is applied on the input image and low-level features are extracted using digital filters.

4.3. Extraction of Patches

The initial mammogram contains meaningless information, such as areas with no
breast tissue. A peripheral cropping technique is applied to eliminate part of this area as
shown in Figure 1. However, it still remains a significant part of the image that consists
of unwanted details. Thus, the idea of patch extraction, shown in Figure 2, is adopted.
According to this approach, the image is traversed horizontally, using a predefined step,
and only patches that satisfy a set of criteria are extracted and stored for further processing.
These criteria are (a) the predefined number of patches to be extracted by a single image;
(b) the coverage of breast tissue inside a patch should exceed 90% of the patch’s area;
and (c) the inclusion of ROIs or part of them in the patch, if the image contains any type
of lesion.

Figure 2. This figure presents the second stage of the proposed AI framework, where patches are
retrieved from the enriched, multichannel image object. The relevant areas are extracted from the
corresponding annotation mask.

4.4. Tensorization

The tensorization technique parses a given patch of the image and creates a tensor
object for each pixel, which we call dominant pixel. The size of this object depends on the
tensor window size (TWS) hyper-parameter, exploiting the additional spatial information
of the neighborhood. The class of the tensor object is the same as the one of the dominant
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pixel, as depicted in the annotation mask of the corresponding patch. The tensorization
process is depicted as the initial step of the pipeline in Figure 3.

Figure 3. This figures depicts the third stage of the proposed AI framework. The selected patches are
transformed into tensor objects, which are then stored in a temporary list. After a sampling process,
the training and the testing sets are formed. A permutation is applied to the former and both of them
are fed to the AI models.

4.5. Final Dataset Preparation

When the tensorization procedure is completed, all the tensor objects that occur
are stored in a temporary list. Based on the samples per class (SPC) hyper-parameter,
the sampling component picks the samples that will be used for the construction of the
training set, while the rest of them are left for framing the testing set. Aiming to ensure
an unbiased training process, a permutation process is applied on the training set. Both
sets are fed into the available deep learning models, and the results are combined in proper
diagrams to evaluate their performance. To meet real-world criteria, meaning the limited
number of data, mini sets for training purposes are constructed.

4.6. The Pipeline in a Nutshell

From the 115 total cases, only the 90 of them, which refer to women with both breasts
affected, are taken into account for the purposes of this work. These 90 cases correspond
to 360 mammograms, considering two views (MLO and CC) of each breast for all cases.
The mammograms are processed as standalone images, which means that no conceptual
interconnections among them are taken into consideration (i.e., two images depict the
same breast from different view, two images correspond to the same case etc). The low-
level features occur from the digital filters’ application on the original image, which are
combined, along with the original image, in a single three-dimensional object. This initial
pre-processing step is described in Sections 4.1 and 4.2 and depicted in Figure 1.

In the second stage, we automatically extract patches of size 64× 64× 10 pixels from
each multichannel object, in a manner that no useless information is included. This stage of
the pipeline is analyzed in Section 4.3 and presented in Figure 2.

In the final stage, the extracted patches are split into tensors of size TWS × TWS × 10.
The SPC hyper-parameter defines the amount of tensors to be extracted from each patch.
The SPC values are selected in such a way that a small dataset is constructed, to create
proof of concept scenarios; a small number of data are needed for the training process .
In Figure 3, we describe, as an example, the process for splitting the 64× 64× 10 patches
into tensors with size 21× 21× 10. As shown in Figure 3, each class is sufficiently repre-
sented in the final dataset (based on the SPC hyper-parameter), and the tensor samples are
illustrated in the figure with different colors. Though, since the tensors’ size is small enough
(TWS × TWS × 10), we end up with many tensors and an accordingly a long dataset. In an
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effort to address this issue, we assign 30% of this dataset to be used for the training process
and the rest of it (70%) to be used for the validation purposes. This final stage is described
in Sections 4.4 and 4.5 and depicted in Figure 3.

Every time the experiment is repeated, the tensors are selected randomly from the
extracted patches. Thus, we conducted all the experiments several times. In this way, we
ensure that all the methods, including the proposed one, are evaluated on the majority of
the information provided in the original INBreast dataset.

5. Experimental Validation

We compare the proposed tensor-based architecture against state-of-the-art deep
learning models for detecting abnormalities on digital mammograms. In particular, we
compare it with (a) a fine-tuned version of the CNN model presented in [52]; (b) the
model used in [53] inspired by the AlexNet architecture [22]; (c) an improved CNN model
architecture combined with a UNet model adopted in [54]; and (d) the model proposed
in [55], which is based on the SqueezeNet approach [56]. All models were adapted to fit
our dataset and were fine-tuned to achieve higher performance. We designed a series of
experiments based on the tuning of the hyper-parameters, presented in Table 1, that are
common for both models. 64× 64 patch size was selected for eliminating the areas with
useless information and retrieving patches that include satisfying regions of interest. In all
experiments, the models were trained for 70 epochs, and a validation process was applied
on the testing set every 10 epochs. Each distinct experiment was repeated 10 times to ensure
the convergence of the results and report statistics.

Table 1. The hyper-parameters of the proposed framework.

Name Description Value Range Units

TWS Tensor window size >3 pixels
SPC Samples per class ≥10 samples
SPS Selected patch size 32–512 pixels
TSS Tensor step size ≥1 pixels

In Table 2, we present the mean accuracy and F1 scores, calculated on the testing set,
for all the models and all the experimental configurations. The first two columns refer to
the configuration of each experiment, the third column describes the metrics, and the rest
of the columns present the performance of the several models from the perspective of each
metric. Each value represents the mean score achieved by the corresponding model and
is followed by the 95% confidence interval occur by the repetition of the experiments. In
most cases, our proposed approach achieves higher performance than the other solutions.
Furthermore, the smaller range of the 95% confidence intervals in our proposed solution
confirms that the tensor-based model tends to be more robust and stable. However, there
are some overlaps that appeared between the 95% confidence intervals for the different
models. We discuss in detail this overlap in the next paragraphs, where we describe the
Figures 4 and 5.
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Figure 4. Experimental results for the following configuration; TWS = 21, SPC = (10, 40, and 60)
and TSS = 2. The overall accuracy and F1 scores on the testing set are presented in the first two
rows respectively. The rest of the rows correspond to the confusion matrices of the CNN (red hues)
compared to our approach (tensor-based model (blue hues)).
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Figure 5. Experimental results for the following configuration; TWS = 35, SPC = (10, 40, and 60)
and TSS = 2. The overall accuracy and F1 score on the testing set are presented in the first two rows,
respectively. The rest of the rows correspond to the confusion matrices of the AlexNet (red hues) and
the tensor-based approach (blue hues) accordingly.
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Table 2. Comparison of the performance metrics (accuracy and F1-score) between the proposed
approach and state-of-the-art deep learning models for detecting abnormalities in mammograms.
Each value represents the mean score achieved for different experimental configurations (SPC and
TWS) followed by the 95% confidence interval.

Samples
Per Class

(SPC)

Tensor
Window

Size (TWS)
Metrics Our Proposed

Tensor-Based Model

Desai and
Shah,

2021 [52]

Mohapatra
et al.,

2022 [53]

Han et al.,
2022 [54]

Saxena et al.,
2020 [55]

10 35 77%± 5% 65%± 7% 65%± 6% 70%± 3% 73%± 3%
40 35 88%± 5% 78%± 9% 72%± 8% 69%± 12% 74%± 10%
60 35 Testing set 90%± 4% 76%± 7% 78%± 8% 81%± 9% 75%± 15%
10 21 Accuracy 65%± 5% 63%± 6% 62%± 3% 54%± 5% 60%± 6%
40 21 73%± 7% 68%± 6% 68%± 4% 70%± 10% 70%± 13%
60 21 79%± 7% 65%± 6% 68%± 5% 60%± 15% 65%± 15%

10 35 71%± 6% 56%± 5% 58%± 8% 55%± 4% 68%± 10%
40 35 84%± 5% 72%± 9% 68%± 8% 70%± 10% 65%± 20%
60 35 Testing set 83%± 9% 73%± 7% 71%± 10% 80%± 12% 65%± 20%
10 21 F1 52%± 6% 50%± 3% 51%± 4% 45%± 5% 46%± 15%
40 21 60%± 5% 55%± 5% 55%± 5% 55%± 6% 59%± 12%
60 21 71%± 9% 55%± 6% 69%± 8% 58%± 12% 52%± 16%

After performing all the experiments for the aforementioned state-of-the-art deep
learning models, we selected the AlexNet [22] to extract additional metrics and compare it
side by side with the proposed approach. Thus, Figures 4 and 5 show the 95% confidence
interval of the average accuracy and F1 metrics across the epochs and the corresponding
confusion matrices. Specifically, they present the overall accuracy and F1 score of both
models, over the testing set, for different combinations of TWS and SPC. Two distinct
scenarios occur; (a) keep TWS constant and increase the SPC, (b) keep SPC constant and
increase the TWS. The TSS value is set small enough to exploit the spatial correlation of
the ROI pixels by maintaining the overlapping areas among the extracted tensor objects.
Conforming to our initial concept, tensor-based learning should perform better when the
samples are limited and the window size is large enough in order for the spatial information
to be utilized. Thus, for each TWS value we chose three different and low values of SPC to
observe the behavior of both models in small amount of samples.

Evaluating the performance of the models when TWS = 21 (Figure 4), we observe
that the tensor-based model performs better in terms of the accuracy score for all values of
SPC (10, 40, 60). Similar outcomes for the F1 score, even though sometimes the AlexNet
model achieves lower deviation from the mean value. It is noticed that both models present
low performance when the SPC is set to 10 (10 samples from each patch of the dataset).
It is clear that the low number of data, in combination with the small window size of the
tensors (TWS), provide limited information that is not sufficient for the training process
of the models. On the other hand, when either the SPC or the TWS (Figure 5) is set to a
higher value, the performance metrics are higher and the proposed approach seems to be
the superior one. The confusion matrices of both models (red hues for AlexNet and blue
hues for tensor-based approach) ensure that the overall accuracy score corresponds to all
the three classes. It is remarkable that the proposed model tends to be more accurate in all
classes; in the majority of the cases, the diagonal values are higher than the corresponding
ones of the AlexNet approach, while the non-diagonal values are lower.

Evaluating the performance of the models when TWS = 35 (Figure 5), it is shown that
the proposed model presents higher accuracy and F1 scores, while it converges smoothly
and has a more robust behavior in contrast to the AlexNet approach. Additionally, the pro-
posed model reaches the highest performance fast (after 25–30 epochs of training) and
achieves almost 93% accuracy in some configurations. Moreover, the confusion matrices
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confirm that the tensor-based model performance is well distributed among the several
classes. At the same time, the AlexNet is characterized by higher confusion, especially for
the first two classes, in comparison with the proposed solution.

In a few cases, it was observed that some of the state-of-the-art models performed
better than the proposed method. The third row in Table 2, for example, presents the
experiment with SPC = 60 and TWS = 35; the proposed approach presents a mean accuracy
score equal to 90% with a variation of 4% through the several repetitions, while the model
presented in [53] achieves mean accuracy score equal to 78% with a variation 8% for
the same configuration. This means that there are few repetitions of the experiment
where the state-of-the-art model performs better from the perspective of an accuracy
score. Such situations are observed either due to specific configuration of the experiment
parameters or due to irregularities of the final dataset through the several repetitions of a
particular experiment.

The accuracy and f1 score curves in Figure 4 show that the models under comparison
are close enough and the overlap is dense when the SPC is low, while their gap gets reduced
and the overlap is more sparse as the SPC increases for both metrics. On the contrary,
the Figure 5 shows that the minimum gap between the two models seems to be almost
constant as the SPC increases, and the corresponding overlap is slight in a couple of cases.
In the first case, where TWS = 21, it is obvious that the proposed method does not perform
well when both TWS and SPC are low and the overlap is dense. In the second case, where
TWS = 35, the proposed method performs well even for low values of SPC, and the overlap
is sparse where it exists.

6. Conclusions

In this work, we introduce a tensor-based learning model for the classification of
mammogram images. Our solution uses a reduced number of trainable parameters of the
wrapped Rank-R FNN model by utilizing the canonical polyadic decomposition, which
leads to an improved training process with fewer data. The proposed AI framework is eval-
uated on the INBreast dataset and compared against some state-of-the-art models such as a
CNN model, an AlexNet implementation, a ConvNeXt approach, and a SqueezeNet model.

The experimental results demonstrate that the tensor-based model presents better
mean performance in comparison with the aforementioned models for the most tested
configurations of small numbers of training data as it achieves higher accuracy and F1
scores. In addition, our proposed model presents lower deviation and requires fewer
epochs for training in the majority of the experimental tests, while most of the others show
more unstable training. In addition, we concluded that the most proper TWS value equals
35 since, in this configuration, the high accuracy scores correspond to the most precise
detection of the distinct classes as well.

In general, according to the worst-case scenario, the proposed model prevails over the
state-of-the-art approaches about 2–5% of the time , while according to the best case scenario
the proposed model can achieve 20% higher accuracy. Finally, our study demonstrates
that the presented tensor-based learning model can be sufficiently applied on medical data
and achieves accurate results in cases with limited data. On the other hand, the developed
tensor-based framework requires plenty of pre-processing actions such as the creation of
multichannel objects, the extraction of patches and the tensorization procedure, and higher
computation time for training. Such negative aspects of the presented approach constitute
a significant challenge for us given that we aim to optimize the processes and implement
an integrated solution.
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