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Abstract
Recently, significant milestones have been achieved in the field of healthcare data analysis. However, alongside these
accomplishments, substantial data-related challenges have emerged in the domain of big data management. Modern healthcare
projects are no more dealing with a single data repository but many heterogeneous ones and must overcome data variety,
privacy and governance issues. Yet, current solutions face a privacy-decentralization trade-off. To address this dual challenge,
we introduce HealthMesh, a novel layered architectural framework based on the Data Mesh principles, providing a domain-
decentralised paradigm. In addition, the framework incorporates a Semantic Data Model which establishes robust governance,
enables interoperability and guarantees policy compliance for all the data assets. To demonstrate the capabilities of the
proposed approach, we provide an illustrative example inspired by the use case of the INCISIVE project for breast cancer
analytics. Overall, this work makes a significant contribution on collecting key challenges, identifying actors and providing a
set of components and guidelines for establishing a holistic framework for the complex field of healthcare data management.
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1. Introduction
In recent years, the healthcare landscape underwent a
remarkable transformation driven by the digitalisation
of a wealth of health-related data and the advent of Big
Data analytics (e.g., machine learning -ML- technologies).
These developments have opened the path for novel data-
driven techniques where the incorporation of ML tools
has enabled a shift from subjective interpretations to
a more objective and accurate approach in diagnostics
and treatment [1]. A representative example of this ap-
proach is the INCISIVE project [2], a major European
initiative [3] that aims to create an interoperable fed-
erated pan-European data repository with secure data
sharing and distributed analytical capabilities related to
the diagnosis, prediction, and monitoring of cancer1.

However, the rapid advancement of such initiatives in
the healthcare domain often outpaces the concurrent de-
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velopment of the data management infrastructure. This
imbalance between the progress in data analytics and
data management is due to several multifaceted chal-
lenges, which collectively compromise the efficient devel-
opment of (big) data-driven solutions in healthcare [4, 5].

Healthcare data management, like any other data man-
agement system, requires means to ingest, store, process
and analyze data. However, the specificities of this do-
main have been traditionally ignored in the general field
of data management, but they naturally raise new chal-
lenges when tackling projects such as INCISIVE, which
we summarize as follows:

Federated datamanagement for healthcare is amust
since these projects require minimizing centralized ap-
proaches. Indeed, it is not acceptable to build a single
(even if distributed) management system since data gov-
ernance would then be centralized. Instead, data assets
(i) are often distributed across various providers (typi-
cally in different medical centres or even distributed in
the same medical centre), making it difficult to access and
share critical information, and (ii) come with a strong
sense of data ownership from health institutions [6]
that want to decide what piece of data is shared with the
federation. For this reason, distribution alone is not a so-
lution and, instead, a federated data governance protocol
should be defined to provide clear guidelines to enable
healthcare organizations to harness data effectively [4].

Data privacy and security compliance present huge
obstacles for researchers in this field. [7] reviews privacy
preservation methods used in healthcare, including en-
cryption and anonymization, pointing their limitations.
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In addition, it is typically ignored that privacy and se-
curity principles also demand that data computations
must be executed locally and data cannot be moved from
where it resides. In this context, Federated Learning
(FL) is a promising solution for this problem [8]. How-
ever, within the healthcare domain, a lack of consensus
on global privacy policies for enhancing data sharing has
a detrimental impact on research studies [9].
Data variety is a major challenge in healthcare data

management since this domain encompasses data re-
lated to diagnosis, testing, monitoring, treatment, and
health data stored in heterogeneous storage systems,
often in varying standards and formats [10]. Variety
may refer to (i) standards and format-related issues since
healthcare data is typically produced following standards.
[11] reviews predominant standards including openEHR,
ISO13606, HL7, DICOM, etc. that are serialized follow-
ing specific formats (e.g., JSON, CSV). Also, it may refer
to (ii) hardware-specific issues, since a fair portion of
health data is generated by medical equipment (e.g., CT
scan, X-ray, ventilators, etc.). The use of diverse mod-
els of equipment can introduce bias to measurements,
stemming from variations in manufacturing origins, the
utilization of specific methods for image production, and
differences in scans, such as varying backgrounds (e.g.,
black vs. white) or alterations in image contrast. In
addition, addressing variety in healthcare also requires
precise domain interpretation which implies that data
must be interoperable at the semantic level [11]. Oth-
erwise, it may compromise the quality of care provided
to patients and waste resources [12].

Despite the relevance of these challenges, current state-
of-the-art architectural solutions suffer from a privacy-
decentralization trade-off. Solutions collecting data
centrally fall short of privacy and security needs whereas
current distributed solutions do not provide means for
governing a federation and, therefore, lacking a federated
governance model and interoperability framework.

To cover the above-mentioned challenges, we present
HealthMesh, an innovative architectural framework for
federated healthcare data management. HealthMesh is
grounded on the principles of Data Mesh [13], advo-
cating for the decentralization of heterogeneous data
assets into autonomous and independent units referred
to as “data products” that can execute code locally and
share results with the federation. Simultaneously, this
approach fosters data ownership and accessibility due
to a domain-decentralized organization: i.e., data prod-
ucts are categorized into domains and associated with
consensus-driven policies (constraints of use) and avail-
able analytical services. HealthMesh also incorporates
a data governance layer responsible for managing these
data products towards the establishment of a dynamic
yet robust federated big data ecosystem.

The HealthMesh framework comprises three layers

that all together provide answers to the challenges above
identified: The Data Product Layer, the Federated Compu-
tational Governance Layer and the Data Platform Layer.
The Data Product Layer defines all the data products (i.e.,
the data assets) federated into the system. The Federated
Computational Governance Layer contains the artefacts
to manage and govern all the data products. Finally, the
Data Platform Layer acts as a gateway to utilize all the
data management processes and workflows provided by
the system, such as registering a new data source or per-
forming an analytical study over selected data products.

At the core of the Federated Computational Gover-
nance Layer lies a Semantic Data Model, which cap-
tures the relationships between data products and the
prescriptive guidelines established by the consortium
(i.e., the governing body of the resulting federated sys-
tem) together with semantic metadata. These guidelines
have a computational nature, serving to validate the in-
tegrity and compliance of data products with the con-
sortium agreements. The model portrays the system’s
complexity and facilitates the automation, integration,
discovery and governance of data products while guar-
anteeing compliance with the policies defined. Further,
analytical pipelines that need to adhere to specific poli-
cies can also be represented in the semantic model to
govern analytical studies as well.
Contributions. HealthMesh is a novel architectural

framework for federated healthcare data management
with the following contributions: (i) it introduces a do-
main decentralized paradigm, grounded on the data mesh
concept, granting autonomy and data ownership of fed-
erated data products within healthcare institutions. At
its core, (ii) it incorporates a Semantic Data Management
model, which governs the federated data products and
guarantees their compliance with privacy and security
policies set by the consortium. And (iii), this layer fa-
cilitates the discoverability of relevant data products, fa-
cilitates their integration (overcoming data variety) and
triggers federated learning by means of robust gover-
nance mechanisms.

2. Related Work
Current solutions for healthcare data management fall
short of covering the gaps discussed in the motivation.
Specifically, they either provide a centralized approach
not meeting the privacy and security requirements or
they support distribution but not the creation and man-
agement of a federation. Further, the challenges intro-
duced by data variety are not properly addressed.

Many current healthcare solutions are based on Data
Warehousing architectures that prevent the unleashing
of the potential of health data. [14] highlights their limi-
tations in scalability, interoperability and privacy. As an



evolution, Data Lakes rely on Cloud infrastructures [15].
However, these solutions suffer from several limitations,
especially privacy concerns [16] but also the fact that they
do not create a federation but a distributed data manage-
ment system. Current solutions trying to address privacy
concerns (e.g., [17], which discusses the Blockchain ben-
efits and limitations in healthcare) fall into scalability
and interoperability problems. Approaches discussed
above are either centralized, falling short with privacy
concerns (Data warehouse, Data Lake), or decentralized
falling short with governance and interoperability.

In response to this dilemma, innovative architec-
tures supported by semantic-based solutions were raised,
which tackle the lack of data governance in other archi-
tectures. Specifically, data governance may be defined
as to what decisions must be made to ensure effective data
management and data usage and who makes the decision
(locus of accountability for data assets) [18]. In this cate-
gory, we focus on two: Data Fabric and Data Mesh.

Data Fabric [19] is defined as a collection of architec-
tural principles as specific modules. Based on a knowl-
edge graph (data catalog), the architecture enables work-
ing with data at the logical level instead of at the physical
level through data virtualization, providing robust data
governance and interoperability. However, defining and
managing data by a central organization, as discussed
by the authors, make it fall into privacy and security is-
sues, following the same pattern observed in centralized
approaches. Indeed, this solution, like other semantic-
based solutions, does not allow the creation of a data
federation.

Data Mesh [13] is a decentralized architecture built
upon four fundamental principles. Firstly, “Decentral-
ized domain data ownership” advocates for ensuring that
those closest to the data take control. Secondly, “Data as
a product” emphasizes the integration of data, metadata,
and code as a logical unit for sharing. Thirdly, the con-
cept of a “self-serve data platform”empowers data owners
to manage the entire life cycle of their data products.
Lastly, “Federated Computational Governance” establishes
a model that strikes a balance between domain auton-
omy, global conformance, interoperability, and security
within the mesh. Data Mesh advocates for the decentral-
ization of data assets, emphasizing data ownership and
team autonomy, ultimately enhancing data quality and
unlocking the full potential of analytical insights [20].

The analysis of the existing literature reveals a gap in
the current architectural solutions, particularly in the ab-
sence of a robust decentralized framework able to provide
federated governance and privacy measures. The theo-
retical concept of Data Mesh is a promising alternative
to properly manage all the factors previously mentioned.
However, this paradigm sits at a high level of abstraction
lacking concrete descriptions and definitions, which does
not allow to operationalize their principles in a given

project. Further, the data variety aspect, specifically in
healthcare, is not considered. However, there is yet no
available federated data platform covering all the prob-
lems previously discussed. For this reason, we propose
HealthMesh, a novel architectural framework address-
ing the privacy-decentralization trade-off effectively and
operationalizing it for the healthcare domain, while pro-
viding means to tackle data variety in this domain.

3. The HealthMesh Framework
HealthMesh is composed of a set of defined requirements
and an architecture design which includes descriptions
of the components, roles and workflows. We pay special
attention to the Federated Computational Governance
Layer, which sits at the core of HealthMesh.

3.1. Requirements
HealthMesh must cover the whole data life cycle follow-
ing the challenges previously defined.
Functional Requirements: (i) Data registration: In-

corporate new data assets into the big data system. (ii)
Data discovery: Search and filter capabilities of the in-
gested data using metadata parameters. (iii) Data analy-
sis: Ability to perform different types of analytical studies
using data assets of interest.
Non-Functional Requirements: (i) Domain-

decentralization: Data assets should be domain-
decentralized meaning that they should be organized
and aligned with the federation policies and analytical
requirements. (ii) Compliance: A contract is established
between a consortium and the owners of a data asset.
Any federated data assets should be compliant with
the contract and therefore respond to the expected
behaviour agreed. (iii) Privacy and Security: Data must
remain where it resides. Only processed results, in the
form of aggregates, can be retrieved, using Federated
Learning techniques. Individual data pieces should
never be compromised. (iv) Interoperability: The
infrastructure must facilitate the integration and usage
of new heterogeneous data assets, regardless of the
standard, format or hardware-specific issues. We refer
to this as semantic interoperability among data assets.

3.2. Running example: Breast Cancer
Analytics within the INCISIVE project

In this paper we will use the INCISIVE project, briefly
introduced in the introduction, as a running example.
One of the most crucial application areas of INCISIVE
is that of Breast Cancer Analytics. This use case is
based on [21], which introduces a comprehensive ma-
chine learning solution for mammography classification



Figure 1: Running example: the Breast Cancer Analytics use
case within INCISIVE. It represents two different hospitals
with different file formats as starting points.

using BIRADS score, which is a quality control system
that refers to the mammography assessment categories.

Example. Figure 1 describes data asset 1, owned by
Hospital A, a XNAT server [22] with mammography im-
ages in DICOM format alongside its metadata (PatientID,
owner, BIRADS, etc) annotated in the same file headers.
Analogously, data asset 2 (owned by Hospital B), is a file
system with TIFF mammography images also with sim-
ilar metadata but stored separately in an ad-hoc Excel
file. In this example, in both data sets, patient identifiers
have been anonymized. Also, within the same data types,
there may be differences which should be treated, e.g. the
difference of contrast in images due to different scanner
machines (different brands, models...).

In the following, we will show how to manage and
facilitate the integration of these heterogeneous data
assets to enable researchers to perform a federated study
to obtain a single BIRADS score classification model by
using HealthMesh.

3.3. Architecture Design
HealthMesh (see Figure 2) includes three layers: the Fed-
erated Computational Governance Layer, the Data Prod-
uct Layer and the Data Platform Layer. In our approach,
data assets are registered and represented as data prod-
ucts. Data products 𝐷𝑃 are decentralized self-contained
entities encompassing comprehensive elements, includ-
ing data, metadata, and accompanying code responsible
for their maintenance. Every data product must have a
designated data owner responsible for its accessibility
andmaintenance. In this section we introduce the compo-
nents of each layer and explain their functionalities but,
due to space constraints, we focus on the most relevant
ones that show the feasibility of the overall approach.

A. Federated Computational Governance Layer

The goal of this layer is to manage and govern data prod-
ucts. This layer is maintained by a Federated Team
that provides the guidelines for all data products to be
discovered, integrated and consumed. This is a multidis-
ciplinary team consisting of domain experts. Platform,
legal and analytical experts create the guidelines (con-
straints to guarantee when federating a data product)
and features (i.e., specific analytical services) for data
products in a consensus-driven way by means of the
global definitions, policies and analytical services compo-
nents. Healthcare institutions negotiate and establish a
contract with the federated team when registering their
data assets.

Global Definitions. Global Definitions 𝐺𝐷 provide
means to enable governance and interoperability, and
include the set of Domains 𝐷, Common Data Models
𝐶𝑀𝐷 and the reference Ontology 𝑂𝑁𝑇𝑂. Domains 𝐷
are a set of healthcare disciplines given their analytical
requirements, providers, etc. The federated team is re-
sponsible for the definition and evolution of domains.
Consequently, every data product must be associated
with at least one specific domain. Every domain has
a Common Data Model 𝐶𝐷𝑀 that functions as a data
standard essential to enable interoperability. It sets a
structure and content for the data assets. 𝑂𝑁𝑇𝑂 are
vocabularies (i.e., the day-by-day terminology used by
end users), typically in the form of ontology, that en-
able precise interpretation of data and, therefore, remove
ambiguity when interpreting the data meaning.

Example. Data assets 1 and 2 are assigned to the
”Breast Cancer Analytics” domain 𝑑1. Moreover, the
federated team agrees to use DICOM as Common Data
Model (𝐶𝐷𝑀𝐷𝐼𝐶𝑂𝑀), a widely used standard for imaging
data, and SNOMED CT2 vocabulary (𝑂𝑁𝑇𝑂𝑆𝑁𝑂𝑀𝐸𝐷),
one of the largest and most widely used collections of
OWL vocabularies that enable sharing medical records,
clinical trials, and other healthcare data [11].

Computational Catalogues. The computational
catalogues 𝐶𝐶 store the Policy Checkers 𝐶 that imple-
ments the agreed Policies 𝑃. All the procedures stored
in the computational catalogues are defined over the 𝐺𝐷
previously defined to allow interoperability across het-
erogeneous 𝐷𝑃.

Policies and Policy Compliance Checkers. Poli-
cies 𝜌 ∈ 𝑃 are defined by the federated team and em-
body the different guidelines that data products must be
compliant with. Regulatory experts within the domains

2https://www.snomed.org/
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Figure 2: Overview of HealthMesh architecture components

come together and agree that all the related data must be
compliant with relevant laws, regulations, and industry
standards related to the handling, processing, and storage
of data. Similarly, domain-specific policies are defined to
validate data integrity within its context.

Policy compliance checkers 𝑝𝑐 ∈ 𝐶 are computa-
tional resources implementing Policies per domain. In
HealthMesh we implement them as test functions to be
executed on data products. Thus, 𝑝𝑐 is shipped and ex-
ecuted on each data product and, if a data product fails
to meet a specific agreed policy for a given domain, that
data product is not available for exploitation.

Analytical Services. Analytical experts in the fed-
erated team establish and develop a series of analytical
services (𝐴𝑆), designed to operate on the data products
within the system, generating aggregated results and
comprehensive reports. An analytical service 𝜆 is related
to a specific domain 𝑑 and is tailored to the specific typol-
ogy of data and the set of policies that the data products

agreed to adhere (𝜌) to fulfil the analytical requirements.

Example. In our running example, BIRADS mam-
mogram classification 𝜆1 is defined by the analytical team
within the domain 𝑑1. Legal representatives in the fed-
erated team define that data consumed by 𝜆1 should be
compliant with 𝜌1, which states that personal data must
be collected, processed, and stored in compliance with
privacy regulations such as GDPR, CCPA, HIPAA, etc.
In this context, policy checker 𝑝𝑐1 is the computational
function that addresses 𝜌1 ensuring compliance with a
specific typology of data (e.g., there should not be any
personal name or identifiable data). Similarly, policy 𝜌2
which has been specifically defined for this service, states
that all mammogram image data should be annotated
with BIRADS score using DICOM headers.

Semantic Data Model. Data governance is an essen-
tial requirement for the proposed architecture. This com-
ponent orchestrates all the components previously in-



Figure 3: Semantic Data Model: Represented as a RDFS TBOX (terminology) model

troduced and defines the metadata needed to describe
and govern the data assets. Thus, 𝐷𝑃 in each domain
must be mapped to its specific data standard (i.e., 𝐶𝑀𝐷)
and the vocabulary (i.e., 𝑂𝑁𝑇𝑂). Similarly, the data prod-
uct should adhere to its policies agreed (𝑃) and could
be eligible for the analytical services (𝐴𝑆) defined for
that domain. All this metadata is described utilizing a
knowledge graph.

Further, the semantic data model Δ (Figure 3) estab-
lishes the relation between the Data Product metadata
provided by their owners and the guidelines defined by
the federated team to enhance the integration, gover-
nance, and discoverability of data products. The goal
of this model is to provide a consistent semantic model
across the entire framework. Δ is a knowledge graph,
leveraging its capacity to offer a holistic and intercon-
nected perspective of data. Knowledge graphs are a good
choice because they are flexible, heterogenous, intuitive,
formal and scalable [19]. Further, several previous works
have discussed the relevance of knowledge graphs to
tackle governance in Big Data scenarios (e.g., [23]). From
a logical perspective, A data product (𝐷𝑃) can be repre-
sented as a set of < 𝑝𝑟𝑜𝑓 𝑖𝑙𝑒, 𝐷𝑇𝑇 , 𝑇𝐴, 𝐷𝐶 > containing a
Profile (𝑝𝑟𝑜𝑓 𝑖𝑙𝑒), Dataset Type Template (𝐷𝑇𝑇), Tech-
nology Aspects (𝑇𝐴) and a Data Contract (𝐷𝐶). All
this metadata is defined at the time of the data product
registration process. 𝑝𝑟𝑜𝑓 𝑖𝑙𝑒 includes all the metadata
related to the data asset, including its schema (i.e., list of

attributes), owner, version, etc. This is unique to each
data asset. 𝐷𝑇𝑇 specifies the typology of the data asset
to properly categorize the data product. 𝐷𝑇𝑇 contains
information about the data product format (e.g., text,
annotated images, etc.). The same 𝐷𝑇𝑇 can be used in
various domains. 𝑇𝐴 contains all information to grant
authorization and access to data from a technological
point of view. 𝑇𝐴 includes the data access layer creden-
tials and data repository (e.g., access URL) metadata. 𝐷𝐶
acts as an agreement between data providers and the
federated team. It maps the data profile schema to the
Federated Computational Governance layer to facilitate
data integration. The 𝐷𝐶 definition:

𝐷𝐶 = ⟨𝐶𝐷𝐶 = {𝑝𝑐1, 𝑝𝑐2, ..., 𝑝𝑐𝑛},
𝑆𝐷𝐶 = {→𝑆1 ,→𝑆2 , ...,→𝑆𝑛},

𝑅𝐷𝐶 = {→𝑅1 ,→𝑅2 , ...,→𝑅𝑛} ⟩
(1)

contains the Data Product Schema (𝑆𝐷𝐶) and the seman-
tic attribute mappings (𝑅𝐷𝐶) to 𝐶𝐷𝑀 and 𝑂𝑁𝑇𝑂, respec-
tively. It also contains the set of policy checkers 𝐶 to
guarantee its compliance with the domain policies 𝑃 and
compatibility with analytical services 𝐴𝑆. From a data in-
tegration perspective, the 𝐷𝐶 maps the local data source
schema (i.e., 𝑆𝐷𝐶) to the integration schema (i.e., the 𝐶𝐷𝑀
and 𝑂𝑁𝑇𝑂). This is a direct application of the knowledge
graph data federation approach presented in [23], which
enables querying the data sources (i.e., the data products)



via the integration schema. Without a valid data contract,
a data product cannot be part of the federation.

The semantic data model Δ is the key component to
guarantee that heterogeneous medical data assets can be
effectively integrated, categorized, accessed, and main-
tained through the utilization of the resources previously
defined and, from a semantic point of view, acts as an
orchestrator. Furthermore, leveraging ontology lan-
guages such as OWL or DL-Lite family [24], the semantic
data model can benefit from reasoning to validate the
resulting Δ and infer additional information [25, 24].

Algorithm 1 Data product registration

Require: 𝑑𝑜𝑚𝑎𝑖𝑛, 𝑝𝑟𝑜𝑓 𝑖𝑙𝑒, 𝑇𝐴
𝐷𝑇𝑇←Δ.recTemplate(𝑝𝑟𝑜𝑓 𝑖𝑙𝑒)
𝑆, 𝑅 ←Δ.generateMappings(𝑝𝑟𝑜𝑓 𝑖𝑙𝑒, 𝐺𝐷)
𝑃 ′ ←Δ.getPolicies(𝑑𝑜𝑚𝑎𝑖𝑛, 𝑆, 𝑅)
for 𝜌 in 𝑃 ′ do

𝑝𝑐 ←Δ.getPolicyChecker(𝜌, 𝐷𝑇𝑇)
𝐶′.AddPolicychecker(𝑝𝑐)

end for
𝐷𝐶 = <𝐶′, 𝑆, 𝑅>
Δ.addDPMetadata(𝑝𝑟𝑜𝑓 𝑖𝑙𝑒, 𝐷𝑇𝑇, 𝑇𝐴, 𝐷𝐶)

Following Algorithm 1, 𝑝𝑟𝑜𝑓 𝑖𝑙𝑒 and 𝑇𝐴 are provided
by the data product owners and the domain assigned
by the federated team. With 𝑝𝑟𝑜𝑓 𝑖𝑙𝑒, the semantic data
modelΔ determines themost suitable𝐷𝑇𝑇. Based on that,
and using as input the global definitions 𝐺𝐷 and profile
𝑝𝑟𝑜𝑓 𝑖𝑙𝑒 it semi-automatically generates the mappings 𝑆
and 𝑅 to 𝐶𝐷𝑀 and 𝑂𝑁𝑇𝑂, respectively. The policies to
be followed 𝑃 ′ are obtained using the domain 𝐷 and map-
pings following the approach in [26]. Moreover, Δ infers
the respective 𝐶′ based on 𝑃 ′ and 𝐷𝑇𝑇. To complete the
process, all metadata that constitutes 𝐷𝑃 is integrated
into Δ.

Example. In our example, both data assets are reg-
istered using Algorithm 1 into domain 𝑑1. Therefore, as
input, the data product owner must provide the profile,
which for simplicity, let us consider only contains the
attribute ”Subject” (which stands as a patient identifier).
First, HealthMesh would assign as 𝐷𝑇𝑇 ”annotated im-
ages”. Then, with the help of the data owner, who must
supervise the process, the system generates the mappings
to 𝐺𝐷 (in this example, we defined 𝐶𝐷𝑀𝐷𝐼𝐶𝑂𝑀 as 𝐶𝐷𝑀
and 𝑂𝑁𝑇𝑂𝑆𝑁𝑂𝑀𝐸𝐷 as 𝑂𝑁𝑇𝑂). Thus, 𝐷𝐶2 mappings:
→𝑆2 (𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑝𝑟𝑜𝑓 𝑖𝑙𝑒2 , 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝐼𝐷_𝑖𝑑𝐷𝐼𝐶𝑂𝑀) ∈ 𝑆𝐷𝐶2 and →𝑅2
(𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑝𝑟𝑜𝑓 𝑖𝑙𝑒2 , SCTID:116154003𝑆𝑁𝑂𝑀𝐸𝐷) ∈ 𝑅𝐷𝐶2 . In ad-
dition, policy checkers 𝑝𝑐1 and 𝑝𝑐2 are determined to
apply for 𝑑1 (by checking the policies related to that do-
main via Δ) and added to their respective 𝐷𝐶.

B. Data Product Layer

Data products (𝐷𝑃) are self-contained entities encompass-
ing data, metadata and code. Therefore, physical data
assets are stored and maintained by participating institu-
tions/providers. This approach promotes data ownership
and autonomy and is strongly favoured by hospitals and
data owners [6].

Data Product owners are responsible for the life cycle
of the data product and its maintenance. Data owners
are the ones closest to the data and they can understand
how it should be interpreted within each domain.
Sidecar An adjunct component in the form of a side-

car (𝑆𝐶) facilitates seamless integration with the broader
mesh ecosystem. The sidecar is installed inside the in-
stitution/provider infrastructure but it is maintained by
the platform representatives of the federated team. 𝑆𝐶
can retrieve the data of a data product through the data
access layer specified in 𝑇𝐴. Each 𝑆𝐶 contains a Data
Contract 𝐷𝐶 that is retrieved from Δ.

Algorithm 2 illustrates the process of consuming a 𝐷𝑃
for a specific 𝜆. Each time a data product is consumed,
𝑆𝐶 validates its 𝐷𝐶 to verify that data adheres to the
mappings and policies specified. If data products are not
interoperable or compliant, comprehensive reports are
given to the data product owner specifying the errors
obtained during validation. This way, the integrity and
compliance of the data product are always validated in
run-time guaranteeing that it conforms with its most
recent contract. If none of the reports has failed, 𝜆 can be
executed through the Sidecar 𝑆𝐶 to process the validated
𝐷𝑃. The sidecar returns results in the form of aggrega-
tions. Therefore, individual data is never compromised.
This approach creates a robust security measure while
still allowing for analytical tasks to be performed in the
context of Federated Analytics.

Algorithm 2 Data product consumption

Require: 𝐷𝐶, 𝑆𝐶, 𝐷𝑃, 𝜆
𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠𝑅𝑒𝑝𝑜𝑟 𝑡 ←SC.validateRS(𝐷𝑃, 𝐷𝐶.𝑆, 𝐷𝐶.𝑅)
𝑝𝑜𝑙𝑖𝑐𝑦𝑅𝑒𝑝𝑜𝑟 𝑡 ←SC.validateC(𝐷𝑃, 𝐷𝐶.𝐶, 𝜆)
if 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑅𝑒𝑝𝑜𝑟 𝑡 and 𝑃𝑜𝑙𝑖𝑐𝑦𝑅𝑒𝑝𝑜𝑟 𝑡 are valid then

aggResult ←𝑆𝐶.executeAS(𝜆)
else

return Failed reports
end if

Data products configuration strives to adhere to the
FAIR principles of data management [27]. It is character-
ized by a concerted emphasis on fostering data ownership
and the enhancement of data quality within the domain
of healthcare data.

Example. Within our ongoing case study, 𝐷𝑃1 and
𝐷𝑃2 are candidates to be consumed for analytical service



𝜆1. Following 2, 𝑝𝑐1 would scrutinize both 𝐷𝑃1 and 𝐷𝑃2
through their 𝑆𝐶 for any identifiable data. Given that
both data assets are anonymized, 𝑝𝑐1 is expected to return
successful results, confirming compliance with privacy
standards.

However, the report obtained through 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑅𝑆 on
𝐷𝐶2 would inform a format issue indicating that 𝐷𝑃2 is
not available in DICOM format. The report would be
sent to HospitalB to state that data should transformed
to DICOM to adhere to 𝐶𝐷𝑀.

Considering that 𝐷𝑃2 owner applies the necessary pro-
cesses over the data to be compliant with its 𝐷𝐶, both
𝐷𝑃1 and𝐷𝑃2 would be technically and semantically inter-
operable in terms of DICOM standard and SNOMED-CT
vocabulary. Moreover, the data would be anonymized
and annotated with BIRADS in DICOM format. There-
fore, 𝜆1 could be operated in both Data Products.

C. Data Platform Layer

The data platform layer functions as an interface en-
compassing various tools/services to enable data product
workflows such as (i) data product registration, (ii) dis-
covery and (iii) execution of federated analytical tasks.

Data Consumers and Data Product owners use the
platform to perform analytical studies and manage the
Data Products, respectively.

Data product registration is a process to incorporate
new data assets into the system. The process is semi-
automated with the supervision of a data product owner.

Data discovery requires a query (𝑄) provided by data
consumers containing keywords and/or filters in terms
of 𝐺𝐷. The function leverages Δ to effectively identify
the most appropriate data products.

This architectural framework is specifically designed
to enable and enhance secure analytical tasks in the
realm of Federated Analytics, including Federated Learn-
ing. Upon selection of desired data products by data
consumers, a 𝜆 can be performed over the interopera-
ble versions acquired through Algorithm 2 to generate
results.

Example. In our ongoing use case, Data asset 1 and
Data asset 2 are registered by Hospital A and Hospital B
data assets owners as 𝐷𝑃1 and 𝐷𝑃2, respectively. Data
consumers can use the Data Discovery interface to post a
query 𝑄1 containing the keywords ”Breast Cancer” to list
all data products related to domain 𝑑1 such as 𝐷𝑃1 and
𝐷𝑃2 through Δ. In this context, data consumers can se-
lect 𝜆1 in the Analytical Service Interface to be executed
over the previously discovered data products. Consump-
tion of both 𝐷𝑃1 and 𝐷𝑃2 using 𝜆1 would provide a local
classification model. The local models can be aggregated
into a global model for BIRADS breast cancer classifica-
tion. Notice that this process could be done iteratively

until the global model converges. Furthermore, a similar
procedure can be used to perform federated exploratory
data analysis to better understand the underlying data.

4. Conclusions and Future Work
We presented HealthMesh, an architectural framework
designed for the healthcare domain. Building upon data
mesh principles, we present a design encompassing mul-
tiple layers, components and workflows that we illus-
trated employing a real ongoing example. HealthMesh
adopts a federated approach, ensuring that data remains
within healthcare institutions to uphold security and pri-
vacy. The framework strategically employs a Seman-
tic Data Model in conjunction with computational re-
sources to achieve data interoperability and governance.
HealthMesh is a novel architectural framework in the
field that has been built upon the requirements identified
collaboratively with experts from INICISVE. Our work
has certain limitations that we plan to address in the
near future. For example, there is an absence of in-depth
technical considerations due to space constraints and an
experimental evaluation with real data in real scenar-
ios. Currently, HealthMesh is a relevant step in the right
direction collecting concepts of relevance, their relation-
ships, and the identification of key actors, which is a key
contribution in the complex and limited field of federated
data management for healthcare.

The development of HealthMesh opens the door for
future work. For example, to study how blockchain can
be integrated into the framework, the potential of Graph
Neural Networks leveraging the Semantic Data Model,
etc. Last, but not least, we also plan to explore the fea-
sibility of generalizing this solution to other domains
requiring a data federation (e.g., Data Spaces).
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