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Detecting cell types from histopathological images is essential for various digital pathology applications. However,
large number of cells in whole-slide images (WSIs) necessitates automated analysis pipelines for efficient cell type de-
tection. Herein, we present hematoxylin and eosin (H&E) Image Processing pipeline (HEIP) for automatied analysis of
scanned H&E-stained slides. HEIP is a flexible and modular open-source software that performs preprocessing, in-
stance segmentation, and nuclei feature extraction. To evaluate the performance of HEIP, we applied it to extract
cell types fromovarian high-grade serous carcinoma (HGSC) patientWSIs. HEIP showed high precision in instance seg-
mentation, particularly for neoplastic and epithelial cells. We also show that there is a significant correlation between
genomic ploidy values and morphological features, such as major axis of the nucleus.
Introduction

Histopathological examination of formalin-fixed, paraffin-embedded
(FFPE) tissue samples is the cornerstone of cancer diagnosis. Themost com-
mon staining of the tissue samples is hematoxylin and eosin (H&E), which
has been used formore than a century for deducing tumormorphology, cell
types, invasion, mitotic activity, and tumor grade.1,2 With the development
of high-resolution scanners, it has become possible to digitize histopatholo-
gical samples, which enables the use of machine learning methods on H&E
slides. These methods can assist pathologists in diagnostic tasks3 and ex-
tract multi-parametric features from the histological phenotype that may
not be readily accessible to the human eye.4

In recent years, deep learning (DL) methods have been used for various
predicting tasks on H&E images without the need to segment and annotate
cell types.5,6 However, for some computational pathology applications and
approaches, such as combining cell morphology to genomics data, it is
necessary to extract and annotate cell types from digitalized slides.7–10

These approaches enable computational analysis of the morphological fea-
tures for tens of thousands of cells within a single H&E slide, as well as the
spatial distribution of cells.11–14 Cell segmentation and annotation tasks
are challenging because of the diversity of nuclei characteristics, the pres-
ence of overlapping cells, variance in tissue staining, and background
noise.
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Various methods for cell nuclei classification have been proposed, such
as support vector machine10 and AdaBoost classifiers.15 Other DL-based ap-
proaches have been utilized for nuclei detection, such as the spatially
constrained convolutional neural network (CNN)16 and the multi-task
CNN for simultaneous nuclei segmentation and classification.17,18 While
these approaches perform well on different microscopic image modalities,
they lack the necessary flexibility to be trained with a variety of training
routines. Additionally, their model architectures lack the flexibility to be
adjusted or expanded for inference latency, i.e., the duration between
input and output of a model, or segmentation performance gains, making
impossible to optimize the latency-performance trade-off of the models.
This type of modifiability is necessary in digital pathology, where hundreds
of gigapixel-sized whole-slide images (WSIs) are processed.

To address the need of detecting cell types from digitalized H&E slides
and extract their morphological features, we developed an open-source
computational framework, called H&E Image Processing pipeline (HEIP).
HEIP has modular design, which makes it easy to be modified and adjusted
to reduce inference latency. The core of HEIP is a modified version of the
HoverNet architecture17 with a post-processing approach that enables the
simultaneous segmentation and annotation of cells from digitalized H&E
WSIs (subsequently H&E images).

To demonstrate the utility of HEIP, we analyzedH&E images from ovar-
ian high-grade serous carcinoma (HGSC) patients. HGSC is the most
ber 2023
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common and aggressive subtype of epithelial ovarian cancer that is typi-
cally diagnosed at an advanced stage with widespread metastasis in the
peritoneal cavity. Even though most patients have an excellent initial
response, the 5-year survival rate in HGSC is less than 40%.19

Herein, we evaluate HEIP’s instance segmentation performance with
two HGSC datasets, focusing on cell classification. We also evaluate HEIP's
performance in different sites: tubo-ovarian tumors (uterine adnex, ovary,
and tubes), and intra-abdominal metastases (omentum and peritoneum).
To demonstrate the utility of HEIP, we conducted an exemplifying analysis
to explore the association of the morphological nuclear features and the
ploidy values, which in a cell correspond to a complete set of chromosomes,
computed from whole-genome sequencing data of patients with HGSC.

Material and methods

Patient cohorts

The H&E images used in this study originated from the DECIDER obser-
vational clinical trial and PanNuke study.

Firstly, the DECIDER dataset contains image data from HGSC patients
participating in the longitudinal, multiregional observational study
DECIDER (Multi-layer Data to Improve Diagnosis, Predict Therapy Resis-
tance and Suggest Targeted Therapies in HGSOC; ClinicalTrials.gov identi-
fier: NCT04846933). The image data used herein consists of scanned
images of H&E stained slides from archival formalin-fixed paraffin-embed-
ded (FFPE) tissue blocks collected at the time of diagnosis both for routine
diagnostic and research purposes. The archival diagnostic slides were ob-
tained from Auria biobank. The preparation of the research-purpose FFPE
block was carried out by the Histology core facility at the Institute of Bio-
medicine, University of Turku, Finland. All slides were stained at the de-
partment of pathology in Turku University Hospital. The scanning of the
images was done by Auria Biobank (University of Turku) and the slides
were stored in OMERO database.20 The DECIDER data were divided into
training and validation datasets (see below).

Secondly, we used the PanNuke dataset21 in the training stage. The
PanNuke dataset is a publicly available dataset of automatically generated
nuclei instance segmentation and classification, from 19 different tissue
types and cancer, from more than 20K patches at different
magnifications.21

Training dataset: For the instance segmentation method, we trained the
model using a dataset of 13 H&E images from 13 HGSC patients from the
DECIDER cohort. A total of 197 regions of interest (ROIs) were selected
from 13 H&E images by a pathologist (A.V.). The ROIs were chosen from
various tissue types and had varying dimensions, with a focus on selecting
regions that contained different cell types. Subsequently, the cells in the
ROIs were annotated by A.V with the train-in-the-loop approach,22 using
the software QuPath23 resulting in 36 093 cell annotations. The cell types
includedwere neoplastic, inflammatory, connective, non-neoplastic epithe-
lial, and dead cells. Additionally, we included 205 343 cell annotations
from the PanNuke dataset21 in the training dataset.

Validation datasets: The model was validated with 2 subsets of images
from the DECIDER cohort. The validation set images were not used in the
training stage and were annotated with the train-in-the-loop approach22

by a pathologist (A.V.). The first validation dataset, "CellTypeValidation",
was designed to assess instance segmentation performance across the cell
types. The second validation dataset, "TumorSiteCellValidation", was de-
signed to assess HEIP performance in different tumor sites.

The CellTypeValidation dataset consisted of 20 human selected ROIs
extracted from H&E images of 19 HGSC samples, totaling 9461 train-in-
the-loop22 annotated cell instances. The distribution of cell types across
the analyzed regions is as follows: 38% of neoplastic cells, 18% of inflam-
matory cells, 36% of connective cells, 8% of epithelial cells, and 0.1% of
dead cells. The majority of neoplastic cells were in ROIs located in the peri-
toneum, omentum, uterus, mesenterium, and subcutaneous tissue. In con-
trast, connective cells were more abundant in ROIs from tubo-ovarian
2

regions, while epithelial cells were more prevalent in ROIs from bowel
tissue.

The TumorSiteCellValidation dataset was comprised of 36 ROIs located
at the tumor–stroma interface of 18 randomly selected H&E images, includ-
ing omental (6), peritoneal (6), and tubo-ovarian (6) tumors, from an equal
number of HGSC patients. We selected 2 1000 × 1000 pixel ROIs from
each H&E image. The distribution of cell types is primarily composed of
neoplastic cells (58%), followed by connective cells (26%) and inflamma-
tory cells (16%). Neoplastic cells accounted for over 50% of each tissue
type, while connective cells accounted for over 20%, reaching 33% in the
case of peritoneum. Dead and epithelial cells were excluded from the anal-
ysis as their number in the ROIs was non-existent or too small for reliable
analysis

We also show an example of a possible downstream analysis by calculat-
ing correlation between features extracted from images and genomic ploidy
values. The ploidy association dataset contains an independent subset of pa-
tients in the DECIDER cohort. The samples in ploidy vs. feature correlation
analysis were matched, i.e., the H&E image and whole-genome sequencing
sample are taken from the adjacent locations of the same tumor piece. We
obtained 47 digitalized H&E slides from 23 HGSC patients with this crite-
rion. The H&E images were obtained from omental (18), peritoneal (12),
and tubo-ovarian (17) tumors.

Image preprocessing

The H&E images were scanned in MIRAX format with 20× magnifica-
tion. To prepare the images for analysis, we used a Python library called
HistoPrep.24 HistoPrep was employed to identify and segment tissue areas
from H&E images into patches. Additionally, patches with insufficient in-
formation or a low signal-to-noise ratio were excluded using a series of fil-
ters. The H&E images were partitioned into patches with dimensions of
1250 × 1250 pixels, and for each image, the patches were saved in a sep-
arate folder in PNG format. The number of patches varied depending on
the size of the tissue and the filtering applied, ranging from hundreds to
thousands per image.

Deep learning instance segmentation model

Adeep learning approachwas developed to segment and classify the nu-
clei. The model is a multi-task CNN, loosely based on the HoVer-net
architecture.17 Similar to HoVer-Net, the architecture comprises a shared
encoder and 3 distinct task-specific decoders with distinct output tasks.
However, instead of using the post-processing method used by the HoVer-
Net model, we opted for the Omnipose post-processing approach25 due to
its better overall segmentation performance, as demonstrated in Table S1.

The segmentation and classification performanceswere evaluated using
the following metrics: segmentation quality (SQ), detection quality (DQ),
and panoptic quality (PQ). SQ is calculated as the normalized mean of the
Intersection over Union (IoU), which measures the quality of the object de-
lineation. DQ, also known as F1-score, is the harmonic mean of precision
and recall and measures how well countable objects are detected from the
background. PQ is defined as the product of DQ and SQ and quantifies
the performance of instance segmentation in a unified manner. The formu-
las for these metrics are as follows:26

DQ ¼ TPj j
TPj j þ 1

2 FPj j þ 1
2 FNj j

SQ ¼ ∑ p,gð Þ∈TPIoU p, gð Þ
TPj j

PQ ¼ DQ� SQ ¼ ∑ p,gð Þ∈TPIoU p, gð Þ
TPj j þ 1

2 FPj j þ 1
2 FNj j

where TP, FP, and FN denote the true-positive, false-positive and false-
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negative, respectively. IoU denotes the intersection-over-union and was set
to 0.5.

In order to provide a more precise assessment of the HEIP instance seg-
mentation, we employed estimated confidence intervals (CIs) using a
bootstrapping approach.27 Bootstrapping employs resampling the valida-
tion dataset multiple times (n = 200). We derived confidence bounds by
extracting percentiles from the resulting bootstrap distribution.28

After instance segmentation, a json file, in geojson format, is generated
containing the coordinates of each detected nucleus as polygons. HEIP then
extracts various nuclei features from the json file, including area, volume,
solidity, eccentricity, minor axis, major axis, aspect ratio, and perimeter.
Additionally, it estimates the percentage of cell types and Shannon index
entropy values.29 The definition of each feature is detailed in Table S2.

Whole genome sequencing

We conducted a WGS analysis to investigate the correlation between
nuclear cell characteristics, as extracted using HEIP, and ploidy. The ap-
proach used for this analysis is consistent with the methodology outlined
in the Methods section of Lahtinen et al.30

Copy number calling, ploidy, and purity estimation

Copy number calling was conducted on 23 patients using the Hartwig
Medical Foundation toolkit, with genomic breakpoints and breakends ex-
tracted using the Genomic Rearrangement Identification Software Suite
(GRIDSS).31

B-allele frequency (BAF) was calculated with AMBER (https://github.
com/hartwigmedical/hmftools/tree/master/amber/) using heterozygous
single nucleotide polymorphismSNPGATK Mutect2;32 and read depth ex-
tracted using COBALT (https://github.com/hartwigmedical/hmftools/
tree/master/cobalt/). PURity and PLoidy Estimator (Purple)33 was used
to estimate the copy-number profile, purity, and ploidy by combining
BAF, read depth, filtered breakpoints, and somatic mutations.

The model used to calculate purity and ploidy selected the most parsi-
monious solution among a grid of possible combinations using a fit score.
The fit score was determined by a deviation penalty, event penalty multi-
plier, and somatic deviation penalty. The deviation penalty penalized solu-
tions requiring subclonality to explain copy number patterns, while the
event penalty aimed to disfavor the number of alterations required to
pass from normal diploid chromosomes to observed minor and major allele
Fig. 1.HEIP schematic workflow. HEIP is a comprehensive software for processing H&E
input to HEIP is a digitizedH&E image. Panel B: Preprocessing step is donewithHistoPre
segmentation. Panel D: Cell nuclei feature extraction, such as morphological features, c

3

copy numbers. Additionally, combinations of [purity; ploidy] values that
violated the rule of somatic variants were penalized.

Statistical analyses

HEIP extracts features for each individual nucleus present in the tissue
samples, resulting in data from hundreds or thousands of nuclei features.
To summarize the data and provide representative statistical measurements
for each sample, we employed the median and variance. Subsequently, the
correlation between the median and the variance of each morphological
feature (area, volume, major axis, and perimeter) of neoplastic nuclei and
the corresponding ploidy value of the samples was computed. The Spear-
man correlation was used to calculate correlation. Analysis of variance
(ANOVA) was used to investigate the correlation between ploidy and the
3 tumor locations: omentum, tubo-ovarian, and peritoneum. All statistical
analyses were performed using R software (version 4.2.1).

Results

Overview of the HEIP pipeline

The HEIP pipeline is designed to extract cell nuclei and their morpho-
logical nuclear features from H&E images using a DL-based segmentation
model as illustrated in Fig. 1. Briefly, the pipeline is based on two custom-
izable steps. The first step processes the H&E images to be amenable for
analyses. The second step consists of instance segmentation, which is fur-
ther divided into cell segmentation and classification steps. Additionally,
various Python functions, such as shapely geometry functions,were utilized
to extractmorphological nuclear features from cell nuclei as well as cell per-
centages and Shannon Index, whichmeasures entropy. TheHEIP pipeline is
designed and implemented to be modular and is therefore easy to modify.

Instance segmentation results

Upon visual inspection, the instance segmentation results were very
close to the pathologist’s ground truth segmentations. Several illustrative
cases are shown in Fig. 2. However, we noticed that HEIP tends to make
mistakes in detecting very large nuclei, by dividing them into smaller nuclei
(Figure S1).

As instance segmentation is arguably the most influential step in the
H&E image analysis, we evaluated the HEIP instance segmentation step
images in order to detect cell nuclei and their morphological features. Panel A: The
p. Patches are visible in red. Panel C: Nuclei are detectedwith deep learning instance
ell percentages, and Shannon Index.

https://github.com/hartwigmedical/hmftools/tree/master/amber/
https://github.com/hartwigmedical/hmftools/tree/master/amber/
https://github.com/hartwigmedical/hmftools/tree/master/cobalt/
https://github.com/hartwigmedical/hmftools/tree/master/cobalt/


Fig. 2. Instance segmentation examples. Five examples of performance of HEIP, the ROIs were chosen from various tissue types (tubo-ovarian, omentum, bowel, and
peritoneum), focusing on different cell types. Panel A: Original tiles from an H&E image. Panel B: Cell classification results by HEIP. Panel C: Ground truth of the nuclei,
borders, and types by pathologist.
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Table 1
Cell classification results in the CellTypeValidation dataset. The results of the cell classification of the 9461 train-in-the-loop annotated cells
from the 20 ROIs extracted from H&E WSI of 19 HGSC samples are presented. The performance for the four cell types was evaluated using
the Panoptic quality (PQ), detection quality (DQ), and segmentation quality (SQ) measurements. The confidence interval, denoted within pa-
rentheses, was calculated using a bootstrapped approach comprising 200 rounds. Bold font indicates higher values.

Cell type PQ DQ SQ

Neoplastic cells 0.67 [0.624, 0.697] 0.77 [0.731, 0.811] 0.86 [0.849, 0.87]
Epithelial cells 0.69 [0.615, 0.756] 0.79 [0.707, 0.874] 0.87 [0.846, 0.885]
Connective cells 0.53 [0.454, 0.587] 0.64 [0.548, 0.71] 0.83 [0.818, 0.84]
Inflammatory cells 0.50 [0.424, 0.593] 0.59 [0.499, 0.69] 0.85 [0.844, 0.863]
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with three metrics: segmentation quality (SQ), detection quality (DQ), and
panoptic quality (PQ). See Methods section for more details. Two indepen-
dent datasets were used to evaluate the segmentation performance of HEIP.
The CellTypeValidation dataset was designed to assess instance segmenta-
tion performance across the cell types (neoplastic, inflammatory, connec-
tive, and epithelial). Results for different cell types are shown in Table 1.
The best performance was observed in detecting neoplastic and epithelial
cells, whereas the detection of connective and inflammatory cells was
lower. Assessing all annotations without distinguishing between specific
cell types, HEIP achieved a PQ of 0.75, DQ of 0.88, and SQ of 0.85 as
shown in Table S3.

The TumorSiteCellValidation dataset was designed to assess HEIP per-
formance in different tumor sites (tubo-ovarian, omentum, and perito-
neum), focusing on evaluating the performance across tumor–stroma
interface. The results are presented in Table 2, which shows that HEIP
has better performance in detecting neoplastic nuclei in omental tumors,
achieving a PQ of 0.72, DQ of 0.80, and SQ of 0.90. Comparable results
were observed in peritoneal tumors though performance was lower in the
tubo-ovarian samples. Moreover, when evaluating overall annotations
without distinguishing among various cell types, the instance segmentation
results for the TumorSiteCellValidation dataset showed analogous out-
comes to those of the CellTypeValidation dataset.
Table 2
Cell classification results in TumorSiteCellValidation dataset. The results of the cell classifi
from different tissue types of HGSC patients are presented. Panoptic quality (PQ), detect
The confidence interval, denoted within parentheses, was calculated using a bootstrapp

Tubo-Ovarian Omentum

Cell type PQ DQ SQ PQ DQ

Neoplastic
cells

0.62 [0.487, 0.699] 0.70 [0.558, 0.791] 0.89 [0.87, 0.903] 0.72 [0.661, 0.783] 0.80

Connective
cells

0.54 [0.473, 0.608] 0.62 [0.544, 0.705] 0.86 [0.854, 0.876] 0.61 [0.556, 0.655] 0.70

Inflammatory
cells

0.45 [0.34, 0.547] 0.54 [0.404, 0.666] 0.76 [0.621, 0.845] 0.64 [0.595, 0.674] 0.75

Table 3
Correlation results between morphological features and ploidy, in ploidy
the morphological features extracted from the H&E samples and the gen
the variance of area, volume, major axis, and perimeter, with the respecti
relation results of all 47 samples, whereas the latest two columns exclude
dicates higher values.

Correlation with ploidy

Features Median Variance

Area
0.24
(p = 0.1)

0.29
(p = 4.7 · 10

Volume
0.21
(p = 0.16)

0.26
(p = 7.8 · 10

Major axis 0.44
(p = 2.1 · 10−3)

0.46
(p = 1.1 · 10

Perimeter 0.34
(p = 0.02)

0.41
(p = 4.5 · 10
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Ploidy analysis

HEIP extracts several morphological features from cell nuclei, which
can be utilized in downstream analyses. As an example, we explored the as-
sociation between ploidy values computed fromwhole-genome sequencing
data, as described in the Methods section, and the median and variance of
four features of neoplastic nuclei extracted by HEIP (area, volume, major
axis, and perimeter) in 47 samples. The sequencing data were generated
from the same sample as the H&E images. The highest correlation was ob-
served between the major axis and ploidy, in both median (0.44, p = 2.1 ·
10−3) and variance (0.46, p = 1.1 · 10−3), as shown in Table 3. Overall,
ploidy andmajor axis, are associated among samples from the same patient
(Fig. 3).

The correlation between ploidy andmajor axis wasmoderate, and there
are some outliers that we inspected in amore detailed fashion. Two samples
(EOC465_pPer1 and EOC557_pOme1) exhibit technical tissue artifacts, fea-
turing stretched tissues, and elongated cells that have been incorrectly
segmented and classified (Fig. S2). Eliminating these 2 outliers, the correla-
tion increased for the median to 0.5 (p=5 · 10−4), while for the variance,
it decreased slightly to 0.42; however, the correlation remained statistically
significant (p = 4.4 · 10−3). Genomic ploidy values and anatomical tumor
locations do not correlate (ANOVA; p = 0.93, Fig. S3).
cation for the dataset composed of 36 tumor–stroma interface ROIs of 18H&E slides
ion quality (DQ), and segmentation quality (SQ) were considered for the evaluation.
ed approach comprising 200 rounds.

Peritoneum

SQ PQ DQ SQ

[0.736, 0.869] 0.90 [0.894, 0.905] 0.71 [0.654, 0.76] 0.80 [0.745, 0.859] 0.88 [0.875, 0.887]

[0.635, 0.752] 0.87 [0.865, 0.882] 0.66 [0.62, 0.7] 0.77 [0.725, 0.816] 0.86 [0.849, 0.871]

[0.699, 0.794] 0.85 [0.842, 0.857] 0.56 [0.461, 0.646] 0.66 [0.549, 0.762] 0.84 [0.833, 0.857]

association dataset. The table shows the correlation values between
omic ploidy value of the exact section, in particular the median and
ve ploidy value of the samples. The first two columns display the cor-
the two samples with unconventional tissue structure. Bold font in-

Correlation with ploidy (after outliers deletion)

Median Variance

-2)
0.36
(p = 0.02)

0.33
(p = 2.6 · 10−2)

-2)
0.32
(p = 0.03)

0.30
(p = 4.7 · 10−2)

-3)
0.5
(p = 5 · 10−4)

0.42
(p = 4.4 · 10−3)

-3)
0.44
(p = 2.2 · 10−3)

0.38
(p = 1.1 · 10−2)



Fig. 3. Correlation between major axis and ploidy values in ploidy association datates. The graph illustrates the correlation between ploidy values and major axis of nuclei
across different tissues: omentum (18), peritoneum (12), and tubo-ovarian (17). The ploidy values and H&E image analysis were done using matched samples from the same
section. Panel A: Each data point in the plot represents a sample for which we were able to correlate the median value of the major axis of nuclei with its respective ploidy
value. Panel B: Each data point in the plot represents a sample for which we were able to correlate the variance value of the major axis of nuclei with its respective ploidy
value. A clear positive correlation is observed for both panels. For clarity of understanding the tissue distribution, we have differentiated the three specific tissues in the
graph: omentum (Ome), represented by red circles; tubo-ovarian (Tub-Ova), represented by light blue triangles; and peritoneum (Per), represented by green rectangles.
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Discussion

Digitalized H&E slides are becoming increasingly important in cancer
research.1,34 Herein, we have presented HEIP, an automated pipeline for
processing H&E images, detecting cell types, and extracting morphological
features of the cells, as well as cell percentages and Shannon Index. HEIP is
designed and implemented as modular software and trained for HGSCH&E
images. Modularity ensures versatility of HEIP to various image analysis
tasks with minimal modifications required. Furthermore, the modular de-
sign permits easy upgrading tomore sophisticated methods as they become
available. The output of the nuclei detection is a json file, which contains
the polygons with the coordinates of each detected nucleus. By using json
files, HEIP reduces the need for memory, compared to the image masks,
and storage space, making it efficient.
6

We showed the utility of HEIP in the analysis of H&E images from his-
topathological research samples of HGSC patients. Importantly, HEIP esti-
mations for cell type annotations (neoplastic, inflammatory, connective,
and epithelial nuclei) agreedwell with the pathologist’s ground-truth anno-
tations. However, HEIP did not accurately recognize the borders of very
large nuclei and tended to divide them into several nuclei. In general,
HEIP performance is higher (neoplastic) or on par (connective and inflam-
matory) with the other nuclei segmentation methods trained with the
PanNuke dataset,21 whose PQ values range from 0.3 to 0.5. The recognition
of dead cells was not involved in the analyses as the number of dead cells in
the datasets was negligible.

As an example of a downstream analysis, we explored correlation be-
tween ploidy and nuclear morphological features using WGS and
histomorphological data from the same tumor piece. Our results indicate



V. Ariotta et al. Journal of Pathology Informatics 14 (2023) 100339
a significant moderate correlation between major axis of neoplastic nuclei
and ploidy. These findings are consistent with Boehm et al.,7 who reported
a possible association between nuclear size and WGS.

The utilization of an automated pipeline, such as the HEIP, for cell nu-
clei recognition and feature extraction can offer significant improvements
in both accuracy and efficiency of histological image analysis. This, in
turn, can lead to numerous advantages in clinical routine and open new av-
enues for research. By eliminating the need for manual annotation of image
features, the variability and bias of the analysis can be reduced, as well as
enhancing reproducibility. Furthermore, the use of automated pipelines al-
lows for the rapid analysis of whole-slide images, enabling easier evalua-
tions of the sample's morphology and cell composition. This approach has
the potential to enhance our understanding of complex biological systems,
ultimately improving the diagnosis and treatment of cancer.

Taken together, we have developed an open-source pipeline HEIP for
comprehensive analysis of H&E images. We have shown the utility of
HEIP in detecting selected cell types and nuclear morphological features
in HGSC H&E images. As HEIP is modular, it can be modified to accommo-
date H&E images from other cancers as well.

Limitations of the study

The primary limitations of HEIP regards the instance segmentation
phase. HEIP faces challenges in accurately segmenting very large nuclei,
often resulting in their over-segmentation into smaller entities. Further-
more, although HEIP demonstrates promising performance in classifying
neoplastic cells, it encounters difficulties in accurately identifying dead
cells as neoplastic. Future work would incorporate more dead cell annota-
tions in the training set.

Data and code availability

All raw DNA sequencing data is submitted to the European Genome-
phenome Archive (EGA) and will be publicly available under study acces-
sion number EGAS00001006775.
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