Introduction to the INCISIVE project

Gianna Tsakou

Senior PM/Senior Analyst INCISIVE Coordinator

Improving cancer diagnosis and prediction with Al and big data

A

About

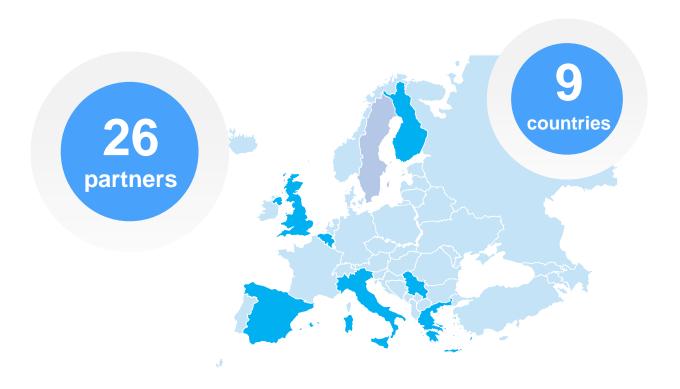
A multimodal **Al-based toolbox** and an **interoperable health imaging repository** for the empowerment of imaging analysis related to the **diagnosis**, **prediction** and **follow-up** of **cancer**.

Duration: 42 months

From October 2020 to March 2024

Call: H2020-SC1-FA-DTS-2019

Topic: DT-TDS-05-2020 AI for Health Imaging



Funding: 9.995.727,50 €

Our Consortium

- 9 Universities / Data providers
- 7 SMEs
- 6 Research / academic institutions
- 3 Large industries
- 2 Other

Areas of expertise

Al for health imaging & data analytics

Security

High Performance Computing

Complex ICT systems/integration

Areas of expertise

Cancer clinical research/practice & data sharing

Patient representation & evaluation

Legal and ethical issues

TIMELEX

Innovation and business planning

MCISIVE

Main objectives

Al-based toolbox that enhances the accuracy, specificity, sensitivity, interpretability and cost-effectiveness of existing cancer imaging methods

TARGETED IMPACT ON:

Healthcare professionals involved in cancer care

Interoperable pan-European **federated health data repository** (medical images & clinical data) that enables secure data sharing in compliance with ethical, legal and privacy requirements

- Al developers
 Al experts
- Researchers

Clinical & Tech pillars

Data collection

Retrospective/prospect ive data

- for AI training
- Prospective data
- for AI training
- Al validation
- Al testing

Al Development

Al models' development in three iterations

Al toobox prototypes

First M18

M₂6

second M30

final M42

Infrastructure

Supports development and delivery of all services

Temporary infrastructure

central data storage

Federated space

distributed data storage

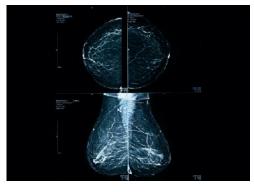
Hybrid infrastructure

both central and distributed data nodes

Obj. 1: Al toolbox

Development of AI services to meet clinical needs

	Necessary Features of the Al Toolbox	Nice to have Features of the Al toolbox
1.	Classifying abnormalities as malignant/benign	Modelling/mapping the potential changes of the tumor in time
2.	Calcification detection in mammographies	Prediction of metastasis risk
3.	Determine the extense of the disease (multifocal vs multicentric)	Accurate discretization between healthy and pathologic tissue
4.	Accurate identification of metastasis	Assessing tumor heterogeneity through medical imaging
5.	Grade of malignancy prediction	Prediction of molecular subtype of cancer through medical imaging
6.	Extraction of novel biomarkers	Prediction of medication/intervention effect based on imaging/histopathology/lab results
7.	Cancer staging using different types of data	Association of genetic features with imaging
8.		Optimization of decision making


- Segmentation of medical images
- Combination of multiple modalities and types of data (imaging + clinical)
- Decision support to HCPs
- Explainability of Al
- Intuitive UI:
 - Medical images → medical reports
 - AR enhanced visualization
- Model-as-a-Service and Federated Learning

n's Horizon 2020 research ment number: 952179

Pilot studies

LUNG CANCER (Cyprus, Greece, Italy)

PROSTATE CANCER (Cyprus, Greece, Spain)

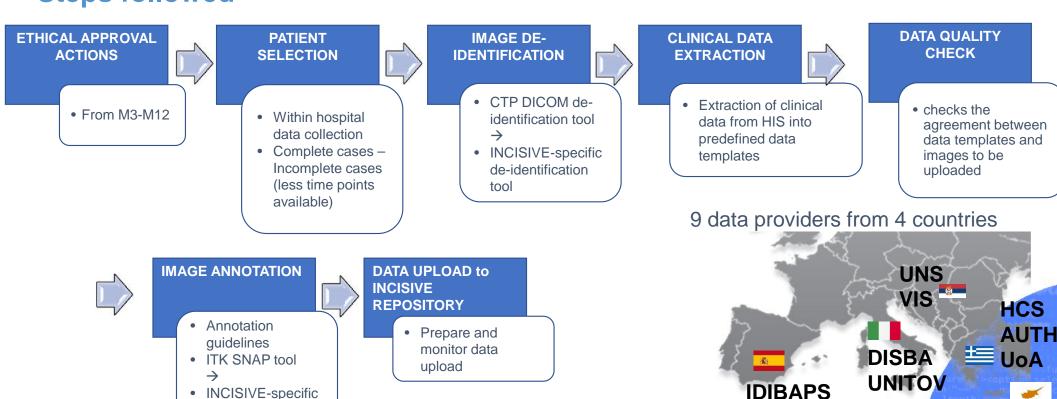
(Cyprus, Greece, Italy, Serbia)

BREAST CANCER

COLORECTAL CANCER

(Cyprus, Greece, Italy)

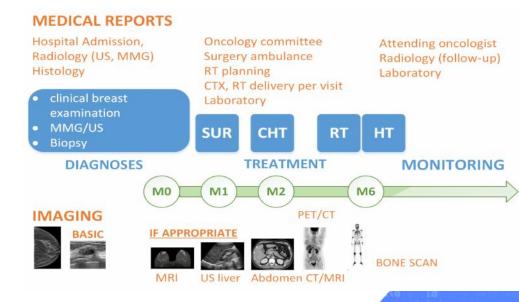
will participate in 8 pilot studies in 5 countries for a period of 18-months.



Obj. 2: Data collection

annotation tool

Steps followed



Obj. 2: Data collection

Steps followed

- Challenging data integration combining multisource data in a single view. Two categories of data:
 - clinical and biological data
 - imaging data
- INCISIVE solution Data collection guidelines
 - Defined clinical representation for each cancer type (data templates)
 - Medical image type and quality specifications
 - Defined data structure & naming conventions

Citizens' health data: first and most important link in the data sharing chain

	Data Donation	>	Processing		Results & Sharing
0	Key Stakeholders: - Citizens/patients - Healthcare providers/Care centers	0 0 0	Safe storage & analysis Data interoperability Data curation Anonymisation Annotation	0	Secure & transparent sharing Sustainability

- Right to determine if and for which purposes health data may be shared
- Compliance with legal/ethical requirements is indispensable
- Secure & transparent sharing of healthcare data according to FAIR principles (Findability, Accessibility, Interoperability and Reusability)
- Major form of participation and contribution to the research process
- Empowering better healthcare services through deidentified data sharing

Benefits of data sharing*

Transparency

Maximising the utility and impact of the data collected

Making collaboration easier

Research acceleration

Reproducibility

Data citation & credit

Long-term data preservation

Meeting requirements of funding and publications

*based on ODAP The Open Data Assistance Program at Harvard (https://projects.iq.harvard.edu/odap/benefits-sharing-data), https://www.ccdc.cam.ac.uk/Community/depositastructure/cif-deposition-guidelines/benefits-of-data-sharing/

This project has received funding from the European's Horizon 2020 research and innovation programme under Grant Agreement number: 952179

Barriers of data sharing*

Technical

inadequate data collection; lack of standardization and of common; varying data quality; incompatibility between databases; language barriers

Motivational

lack of incentives to share data

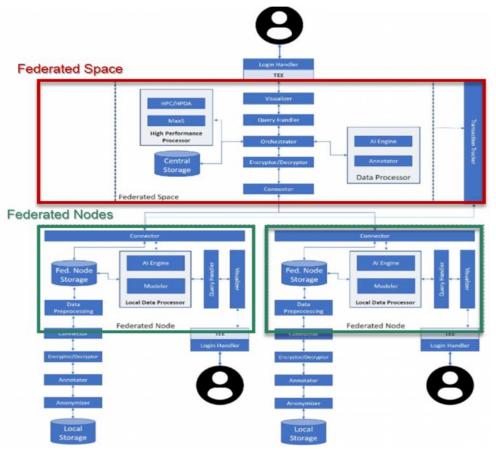
Economic

lack the financial resources for disease surveillance, skilled human resources, limited training capacity, difficulties in retaining staff

Political

restrictive data access policies; bureaucratic hurdles, lack of guidelines; and lack of trust

Legal and ethical


ambiguous and complex legal framework

*based on Sane, J. and Edelstein, M. (2015). Overcoming Barriers to Data Sharing in Public Health: A Global Perspective.

Federated data sharing

"The main benefit of a federated approach is that the data stays with the data provider and does not have to leave the premises where it normally resides"

Data federation facilitates:

- aggregation of data from multiple sources
- ethical, legal and privacy compliance
- transparency and traceability all along the data sharing process → strengthens trust
- Hybrid (central/distributed) storage: selection based on data provider's needs

MCISIVE CCESS

INCISIVE model for data sharing & access

"Controlled access +"

SHARING by Data Providers

- Data providers (DP) contact the INCISIVE platform to contribute data
- When sharing data, DP have to accept T&C and provide description of the data

ACCESS by Users (Al Providers)

- Information about data sets and terms of use available on an open site
- Researchers have to apply to be admitted to INCISIVE secure platform environment => present research proposal and accept T&C
- User acceptance process with advisory role of a Data Access Committee
- If AI developer is accepted, he/she can use the data in the repository available for training

Data Sharing Framework

INCISIVE data infrastructure

facilitates

data holders to share medical images & health data with minimum effort

- Data governance and access management framework
- GDRP compliance
- Support for de-identification & annotation of health images, quality check of clinical data – tools and guidance
- Making the data available for re-use by researchers, incl. Al developers
- Multi-centre, multi-country data sources
- Standardised, interoperable, qualitychecked data

OPEN INVITATION to interested Data Providers!

Main achievements (so far...)

Achievements

4 types of cancer

FIRST PROTOTYPE

2.9M

cancer images

7.4 de-identified patients

9+

data providers 4/9

data providers integrated / federated repository

Achievements

98% of retrospective data available / shared

Data management plan & ethical approvals in place

JCA signed & DPIA in place

Al services defined

Data preparation flows fully operational

Central repository for data sharing fully operational

Federated data storage/sharing/search proof-of-concept operational

Federated Learning proof-of-concept operational

User requirements defined & system functionalities prioritised

Architecture design completed

All main technical components operational (v1 → v2)

Initial AI models implemented & integrated in INCISIVE platform

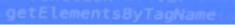
Open for opinion of end-users

CONSULTATION ACTIVITIES WITH END-USERS

UX WORKSHOPS, SURVEYS, INTERVIEWS, LITERATURE REVIEW, ETC.

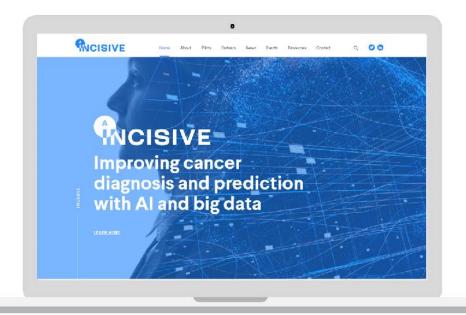
Healthcare professionals

Patients' associations


Al researchers

Technology developers

Legal and ethics experts


We would love to hear your feedback!

Stay tunned!

Subscribe to our newsletter

incisive-project.eu

Follow us:

@incisiveEu

INCISIVE (join our private group!)

THANKS FOR YOUR ATTENTION

A length push ": checked" queryse a queryse lector All "! enabled" length lengt

Improving cancer diagnosis and prediction with Al and big data